ZxLAB \

iscovery & Intelligent Information Govemance

/ '| .
wL _f
"‘_

\"‘ N TR

"\ v:

- y \ N n

‘Q

-‘,‘,'..a
s- /i

‘/

Algorithms for approximate string matching
Petro Protsyk (28 October 2016)

R\

« About ZyLAB
e Overview

 Algorithms
 Brute-force recursive Algorithm
» Wagner and Fischer Algorithm
 Algorithms based on Automaton
* Bitap

QA

ZyLAB

About ZyL AB

ZyLAB is a software company headquartered in Amsterdam.

In 1983 ZyLAB was the first company providing a full -text search program for MS-DOS
called ZyINDEX

In 1991 ZyLAB released ZyIMAGE software bundle that included a fuzzy string search
algorithm to overcome scanning and OCR errors.

Currently ZyLAB develops eDiscovery and Information Governance solutions for On
Premises, SaaS and Cloud installations. ZyLAB continues to develop new versions of its
proprietary full-text search engine.

3 ZyLAB

About ZyLAB

« We develop for Windows environments only, including Azure
 Software developed in C++, .Net, SQL

e Typical clients are from law enforcement, intelligence, fraud
investigators, law firms, requlators etc.
e FTC (Federal Trade Commission), est. >50 TB (peak 2TB per day)
* US White House (all email of presidential administration), est. >20 TB
e Dutch National Police, est. >20 TB

ZyLAB

Full-text search engine

* Boolean and Proximity search operators

e Support for Wildcards, Regular Expressions and Fuzzy search
» Support for numeric and date searches

e Search in document fields

* Near duplicate search

ZyLAB

» Highly parallel indexing and searching

e Can index Terabytes of data and millions of documents

e Can be distributed

e Supports 100+ languages, Unicode characters

; ZyLAB

Overview

Approximate string matching or fuzzy search is the technique of finding
strings in text or dictionary that match given pattern approximately with
respect to chosen edit distance .

The edit distance is the number of primitive operations necessary to
convert the string into an exact match.

The usual primitive operations are: insertion , deletion , substitution |,
transposition .

All operations have the same cost.

ZyLAB

Overview

Levenshtein distance between two words is the minimum number of single-
character insertions, deletions or substitutions required to change one word
into the other.

Named after Vladimir Levenshtein, who described this distance in 1965.

Example: Levenshtein distance between “ZyLAB" and "SEA" is 4:

Remove Substitute m Remove
zyLABJ yLAB [sLAB M SEAB

ZyLAB

Overview

Applications: The most common applications of approximate
string matching are spell checking, syntax error correction, spam

filtering, correction of OCR errors, full-text search.

ZyLAB

10

Full—tex index

Text of the documen
This text Text
is split into tokens

ZyLAB

11

Full—tex index

Text of the document

This

text

Text

split

into

tokens

Dictionary

into

split

text

this

tokens

ZyLAB

12

Full-text index

Text of the document

This is text Text
is split into tokens
Dictionary Occurrences

into [1.7]

is [1,2].[1.3]
split [1.6]

text [1.3].[1.4]
this [1.1]
tokens [1.8]

ZyLAB

13

Full-text index

Text of the document

This is text Text
is split into tokens
Full-text Index
Dictionary Occurrences

into [1.7]

is [1.2],[1.5]
split [1.6]

text [1.31.[1.4]
this [1.1]
tokens [1.8]

ZyLAB

Fuzzy query in ZyLAB search engine :

 All words with Levenshtein distance 2 or less: word~2
 All words with Levenshtein distance 2: word~2 o {word~1}

i ZyLAB

Overview

Problem: Find terms in the dictionary that match the pattern
approximately.

environment~2:
environment
environments
enveronment
environmental

; ZyLAB

Algorithms

Brute-force search Wagner and-ischer
(recursive, 1965) (Dynamic Programming, 194874)

‘ ZyLAB

17

Algoithms

Mathematically, the Levenshtein distance between two strings a,b
s given by the following formula lev, (|a], [b])

max (%, j) if min(s, j) = 0,
levas (i, §) = { levay (i —1,7) + 1
4,01 min ¢ levgp(i,5—1)+1 otherwise.
levﬂib(i —1,7— 1) -} l(aﬁébj)

lev, (i,j) is the distance between the first i characters of a, and the first
characters of b. Lai B is equal to 1 when a;=b; and 0 otherwise.

ZyLAB

18

Algoithms

levyp (i, 7) = 4

[max(, 7) if min(¢, j) = 0,
|1eva,b!z' —1,7)+1
min { lev,y (i, — 1)+ 1 otherwise.
\ Flevﬂ,b (z—1,7—1)+ l(ai:,ébf)

red ¢ deletion of character
blue ¢ insertion of character
greenc substitution or match

ZyLAB

Brute -force search

; ZyLAB

Brute-force search

max(i, j) if min(s, j) = 0,
levey (4, 5) = { tevealt =~ Ld) +1
a,b\?s min leva.,b (3,3 —]_) +1 otherwise.
levap (i — 1,5 — 1) + 1(g;2,)

2 ZyLAB

Brute-force search

private static int CalculateRecursive(string a, string b, int m, int n)

{
if (Math.Min(m, n) == @)
{
return Math.Max(m, n);
¥
var subCost = ((a[m - 1] == b[n - 1]) ? @ : 1) + CalculateRecursive(a, b, m - 1, n - 1);
var delCost = 1 + CalculateRecursive(a, b, m, n - 1);
var insCost = 1 + CalculateRecursive(a, b, m - 1, n);
return Math.Min(subCost, Math.Min(insCost, delCost));
¥

: ZyLAB

Brute-force search

1) Easy to implement using lev, (|a|, |§) formula
2) Exponential complexity of |a|+|b|
3) Not used in commercial applications

2 ZyLAB

Demo

2 ZyLAB

Wagner and Fischer Algorithm

ZyLAB

\/\/ager and Fischer Algorithm

ldea of algorithm

Store Levenshtein distances between all prefixes of the first string and
all prefixes of the second in the matrix.

To compute next cell, only values of three other neighbor cells are
needed:

prefix(b, |b|-1) prefix(b, |b])

prefix(a, |a|-1)

lev(]al, [bl)

prefix(a, |a])

2 ZyLAB

\/\/agne and Fischer Algorithm
car —— cdar

ZyLAB

o ZyLAB

2 ZyLAB

s ZyLAB

3 ZyLAB

. ZyLAB

, ZyLAB

s ZyLAB

s ZyLAB

5 ZyLAB

36

Wagner and Fischer Algorithm

public static int CalculateDynamic(string a, string b)

{

var d = new int[a.Length + 1,

for (int 1 =
d[i,] = i;
for (int i =
d[e, i] = 1i;
for (int 1 = ©; 1 < a.Length;
for (int j = @;
if (a[i] == b[]]) {
d[i +1, j + 1]
} else {
d[i +1, j + 1]

}
¥

return d[a.Length, b.Length];

©; 1 <= a.lLength;

©; 1 <= b.Length;

b.Length + 1];
i++)

i++)

i++) {

j < b.Length; j++) {

dfi, j1;

1 + Math.Min(d[i, j], Math.Min(d[i, j + 1], d[i + 1, j]1));

ZyLAB

\/\/ager and Fischer Algorithm

R Wagner, M Fischer The String-to-String Correction Problem
(1974)

1) Easy to implement using lev, (|a|, |b[)formula

2) Require O(|al*|b|) steps, does not depend on input characters
3) Require O(min(|al, |[b])) memory

4) Matching dictionary requires ~| a | tj ps

ZyLAB

Demo

, ZyLAB

| evenshtein Automaton

ZyLAB

Nondeterministic finite automaton (NFA). States, alphabet, transitions, set of final states,
initial state. For each symbol and state there can multiple transitions.

0,1

Deterministic finite automaton (DFA). States, alphabet, transitions, set of final states,
initial state. For each symbol and state there can be only one transition.

o ZyLAB

41

Automata can be used to recognize patterns in text

1) Begin from initial state
2) Follow transitions for each character in text
3) If resulting state is the final state — it is a match.

Example:0 100 1

ZyLAB

| evenshtein Automaton

Matching dictionary with DFA is easy:

Difficult part

var dfa =|CreateAutomaton(pattern, d);

foreach (var term in dictionary)

{

var s = 9;
foreach(var ¢ in term)

{

s = dfa.Next(s, c);
¥
if(dfa.IsFinal(s))
{

yield return term;
}

42

ZyLAB

Levenshtein automaton for a string w and a number d is

a finite state automaton that can recognize the set of all

strings whose Levenshtein distance from w is at most d

43 ZyLAB

A match require at most |b| steps

ZyLAB

| evenshtein Automaton

How to create Levenshtein Automaton for word w

and a number d?

s ZyLAB

« ZyLAB

Constrction of NFA

Automaton to recognize car~1

7 ZyLAB

48

Automaton to recognize car~1

Recognize: , a, c, ac, ca

blue — insertion
red — deletion
green - substitution

ZyLAB

s ZyLAB

o ZyLAB

; ZyLAB

Each fuzzy degree adds one level

: ZyLAB

| evenshtein Automaton

Every NFA can be converted to equivalent DFA

. ZyLAB

NFA for car~1

Levehshtein Automaton

Matching dictionary with DFA is easy:

Difficult part

var dfa =|CreateAutomaton(pattern, d);

foreach (var term in dictionary)

{
var s = 9;
foreach(var ¢ in term)
{
s = dfa.Next(s, c);
¥
if(dfa.IsFinal(s))
{
yield return term;
}
by

56

When current term and previous term share prefix,
algorithm can start matching from the prefix

ZyLAB

cad

car
caravan
cars

ZyLAB

When both DFAs are in the final state (double circle) we have a match:
e cad
e car
e cars

Fuzzy DFA can be used to generate all possible terms that match it.

59

Levehshtein Automaton

1)
2)

3)

Difficult to implement

DFA construction might be slow for large degree d. In practice
usedwhend =~ {1, 2, 3, 4}

Matching dictionary requires less than |a+d |*N steps, where N
number of terms in dictionary

ZyLAB

Leveshtein Automaton

H. Bunke, A Fast Algorithm for Finding the Nearest Neighbor of a
Word in a Dictionary (1993)

Converting NFA to DFA using RabiéScott powersetconstruction (1959). if
the NFA hasn states, the resulting DFA may have up t@" states

K. Schulz , S Mihov, Fast String Correction with Levenshtein-
Automata (2002)

How to compute, for any fixed degreed and any input word W, a
deterministic Levenshteinautomaton in time linear in the length of W.

ZyLAB

Demo

; ZyLAB

Bitap algorithm

ZyLAB

Bitap , Shift -Or, Shift-And or Baeza- YatesdGonnet algorithm

R. Baeza-Yates, G. Gonnet. A New Approach to Text Searching
(1992)

Balint Domalki, An algorithm for syntactical analysis (1964)

ZyLAB

Text: ABABABC
Pattern : ABAB

The update procedure for the R vector is:
A 1 : .
Ro[i]=1 foralli=1..m
T oli]
A L Rj:1[1] =0 whenp, =t
B 1
Riall =0 whenRiT 1] andp; =0,
R0

o ZyLAB

Text: ABABABC
Pattern : ABAB

The update procedure for the R vector is:

| A
A | 110 Ro[]=1 foralli=1.m
B | 1 | 1
L ! L Ri«[1] =0 whenp, =t;,,
B | 1 | 1
Ril]=0 whenRiT 1]andp; =0,
RO Rl

" ZyLAB

06

Bitap (xact Match)

Text: ABABABC
Pattern : ABAB

W > | >

R el |

R |- |Oo|Pk

el =R el v

Ro

R,

R,

The update procedure for the R vector is:
Roli]=1 foralli=1..m
Rj:1[1] =0 whenp, =t

Ris[l1=0 whenRJ[iT 1] andp,;8t,,

ZyLAB

67/

Bitap(xact Match)

Text: ABABABC
Pattern : ABAB

The update procedure for the R vector is:

| a| B | A
A 11101110 Rij=1 forali=1.m
B | 1] 1| 0] 1
A 1 L ! 0 Ri«[1] =0 whenp, =t;,,
B | 1| 1| 1] 1
Ris[l1=0 whenRJ[iT 1] andp,;8t,,
RO Rl RZ R3

ZyLAB

68

Bitap (xact Match)

Text: ABABABC
Pattern : ABAB

| A | B | A | B
A 110 1| 0 1
B 1 1| 0 1| 0
A 1 1 1| 0 1
B 1 1 1 1| 0
F.

R, R, R, R; R,

Match when value in the last row is O

ZyLAB

Bitap(xact Match)

Text: ABABABC
Pattern : ABAB

_ A B A B A B C
A 1 0 1 0 1 0 1 1
B 1 1 0 1 0 1 0 1
A 1 1 1 0 1 0 1 1
B 1 1 1 1 0 1 0 1
A A
R, R, R, R; R, Ry R; R,

69

ZyLAB

/0

When pattern is small, vector R can be represented by unsigned
Integral value:

uint — for patterns with up to 32 characters
ulong - for patterns with up to 64 characters

ZyLAB

71

Bitap (xact Match)

Text: ABABABC
Pattern : ABAB

Preprocessing step:

Build T vectors for every character C in pattern:
T[C][i] = 1 if P,=C, O otherwise.

TIA] T[B] T[C]
A 0 1 1
B 1 0 1
A 0 1 1
B 1 0 1

The update procedure for the R vector:

R, = 2"-1 (n number of bits in R)
R+1=(R;<<1) | T[t]

Match when:
R; & (mask) == 0

Mask = 1<<(|Pattern|-1)

ZyLAB

Bitap (xact Match)

Text: ABABABC
Pattern : ABAB

T[A] T[B] TI[C]
0 1 1
1 0 1
0 1 1
1 0 1

72

Bit A

A 0 0
B 1 1
A 2 0
B 3 1
4 0

5 0

6 0

7 0

Ry

ZyLAB

~
£
O
+
>
+-
O
O
>
' L]
N’
QO
O
=
an

2 m
AA
BB
AA
B..
<< &
g 9
X 4=

©
L a

Bit
0

T[C]
1

T[B]
1

T[A]
0

ZyLAB

/3

~
£
O
+
>
+-
O
O
>
LL]

N

Q.
O
=
an

2 m
AA
BB
AA
B..
<< &
g 9
X 4=

©
L a

| A<t | 1Bl | (A<<1)|T(B]

Bit

T[C]

T[B]

T[A]

ZyLAB

74

Bitap Exact Match)

Text: ABABABC
Pattern : ABAB

e s e Bit A | A<t | TB] | (A<<1)|T[B] B
; . . A 0 0 0 1 1 1
. 5 ; B 1 1 0 0 0 0
5 . ; A 2 0 1 1 1 1
. 5 ; B 3 1 0 0 0 0

4 0 1 0 1 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0

R, Re

s ZyLAB

76

/* Initialize characteristic vectors T */
for (int 1 = @; 1 < pattern.Length; ++i)

{

T[pattern[i]] &= ~(1ul << 1);
by

/* Initialize the bit array R. */
JInte4d R = ~(0ul);
JIntesd mask = 1ul << (pattern.Length - 1);
for (int 1 = ©; 1 < text.Length; ++i)
{

R = (R << 1) | T[text[i]];

if ((R & mask) == @)

{

return (i - pattern.Length) + 1;

}

return -1;

ZyLAB

Bitap can be used for fuzzy matching with degree d.

The idea of fuzzy bitap is to simulate Levenshtein automaton (NFA) using bit -parallelism, so
that each level of the automaton fits in a computer word (32, 64 or 128 states per level).
For each new character, all transitions of NFA are simulated using bit operations among d+1
computer words .

” ZyLAB

Bitap can be used for fuzzy matching with degree d.

» Instead of 1 vector, we need to keep additional d+1 bit vectors: R%, R',..., RY,

¢ RY - tracks matching with at most d differences

s ZyLAB

Bitap can be used for fuzzy matching with degree d.

» Instead of 1 vector, we need to keep additional d+1 bit vectors: R%, R',..., RY,

¢ RY - tracks matching with at most d differences

s ZyLAB

Bitap can be used for fuzzy matching with degree d.

» Instead of 1 vector, we need to keep additional d+1 bit vectors: R%, R',..., RY,

¢ RY - tracks matching with at most d differences

Update procedure looks like this:

RIy=1..110 .. (dtimes) ... 0= (-1) <<d

Rc{,f+1 = 'fj & (Rd'fj,,f << 1)|& (Rd'fj << 1) & ((RG} << 1) | T[g-ﬂj)

insertion deletion substitution match

" ZyLAB

81

1) Easy to implement, might be difficult to understand
2) Memory required: O(|Pattern [*|Alphabet |)

3) Complexity: O(
O(|Pattern|) w

Text|) when searching for all matches, or
nen searching for the first match

4) Efficient when

Pattern| is small: 8,32,64,128

ZyLAB

Benchmark

Demo

ZyLAB

83

Benchark

Dataset: Project Gutenberg, different languages, 2Gb of text

Search Engine: ZyLAB 6.6
Dictionary : 2178239 terms (2Mln)
Query: environment~2

Time Hits
Wagner and Fischer H 3077
Levenshtein automaton 0.292 sec|3077°
Bitap 1.33 sec|3077"

ZyLAB

84

Levenshtein (1966). "Binary codes capable of correcting deletions, insertions, and reversals”. Soviet Physics

Doklady

Wagner, Fischer, Michael (1974). "The String-to-String Correction Problem". Journal of the ACM

Wu, Manber (1991). "Fast text searching with errors."

Wu, Manber (1992). "Agrep - A Fast Approximate Pattern-Matching Tool"

Baeza-Yates, Gonnet (1992). "A New Approach to Text Searching." Communications of the ACM, 35(10)
Bunke (1993), A Fast Algorithm for Finding the Nearest Neighbor of a Word in a Dictionary

Navarro, Gonzalo (2001). "A guided tour to approximate string matching". ACM Computing Surveys

Schulz, Mihov (2002). "Fast String Correction with Levenshtein-Automata”

ZyLAB

