
Algorithms for approximate string matching

Petro Protsyk (28 October 2016)

Agenda

•About ZyLAB

•Overview

•Algorithms
•Brute-force recursive Algorithm

•Wagner and Fischer Algorithm

•Algorithms based on Automaton

•Bitap

•Q&A

About ZyLAB

ZyLAB is a software company headquartered in Amsterdam.

In 1983 ZyLAB was the first company providing a full -text search program for MS-DOS

called ZyINDEX

In 1991 ZyLAB released ZyIMAGE software bundle that included a fuzzy string search

algorithm to overcome scanning and OCR errors.

Currently ZyLAB develops eDiscovery and Information Governance solutions for On

Premises, SaaS and Cloud installations. ZyLAB continues to develop new versions of its

proprietary full-text search engine.

3

About ZyLAB

•We develop for Windows environments only, including Azure

•Software developed in C++, .Net, SQL

•Typical clients are from law enforcement, intelligence, fraud
investigators, law firms, regulators etc.

•FTC (Federal Trade Commission), est. >50 TB (peak 2TB per day)

•US White House (all email of presidential administration), est. >20 TB

•Dutch National Police, est. >20 TB

4

ZyLAB Search Engine

Full-text search engine

•Boolean and Proximity search operators

•Support for Wildcards, Regular Expressions and Fuzzy search

•Support for numeric and date searches

•Search in document fields

•Near duplicate search

5

ZyLAB Search Engine

•Highly parallel indexing and searching

•Can index Terabytes of data and millions of documents

•Can be distributed

•Supports 100+ languages, Unicode characters

6

Overview

Approximate string matching or fuzzy search is the technique of finding
strings in text or dictionary that match given pattern approximately with
respect to chosen edit distance .

The edit distance is the number of primitive operations necessary to
convert the string into an exact match.

The usual primitive operations are: insertion , deletion , substitution ,
transposition .

All operations have the same cost.

7

Overview

Levenshtein distance between two words is the minimum number of single-
character insertions, deletions or substitutions required to change one word
into the other.

Named after Vladimir Levenshtein, who described this distance in 1965.

Example: Levenshtein distance between “ZyLAB” and “SEA” is 4:

8

ZyLAB yLAB SLAB SEAB SEA

Remove Substitute Substitute Remove

Overview

Applications: The most common applications of approximate

string matching are spell checking, syntax error correction, spam

filtering, correction of OCR errors, full-text search.

9

Full-text index

10

Full-text index

11

Full-text index

12

Full-text index

13

Fuzzy query in ZyLAB search engine :

•All words with Levenshtein distance 2 or less: word~2

•All words with Levenshtein distance 2: word~2 ð{word~1}

14

Overview

Problem: Find terms in the dictionary that match the pattern
approximately.

environment~2:

environment

environments

enveronment

environmental

15

Algorithms

16

Brute-force search
(recursive, 1965)

Wagner and Fischer
(Dynamic Programming, 1968-1974)

LevenshteinAutomaton
(Automata theory, 1992-2002)

Bitapalgoritm
(1964-1992)

Algorithms

Mathematically, the Levenshtein distance between two strings a,b

is given by the following formula leva,b(|a|, |b|):

17

leva,b(i,j) is the distance between the first i characters of a, and the first j
characters of b. 1(aiÎbj)

is equal to 1 when ai=bj and 0 otherwise.

Algorithms

18

redςdeletion of character
blueςinsertion of character
greenςsubstitution or match

Brute -force search

19

20

Brute-force search

21

Brute-force search

Brute-force search

1) Easy to implement using leva,b(|a|, |b|) formula

2) Exponential complexity of |a|+|b|

3) Not used in commercial applications

22

Demo

23

Wagner and Fischer Algorithm

24

Wagner and Fischer Algorithm

Idea of algorithm

Store Levenshtein distances between all prefixes of the first string and
all prefixes of the second in the matrix.

To compute next cell, only values of three other neighbor cells are
needed:

25

Wagner and Fischer Algorithm

26

car cdar

Wagner and Fischer Algorithm

27

car cdar

Wagner and Fischer Algorithm

28

car cdar

Wagner and Fischer Algorithm

29

car cdar

Wagner and Fischer Algorithm

30

car cdar

Wagner and Fischer Algorithm

31

car cdar

Wagner and Fischer Algorithm

32

car cdar

Wagner and Fischer Algorithm

33

car cdar

Wagner and Fischer Algorithm

34

car cdar

Wagner and Fischer Algorithm

35

car cdar

Wagner and Fischer Algorithm

36

Wagner and Fischer Algorithm

R Wagner, M Fischer The String-to-String Correction Problem
(1974)

1) Easy to implement using leva,b(|a|, |b|) formula

2) Require O(|a|*|b|) steps, does not depend on input characters

3) Require O(min(|a|, |b|)) memory

4) Matching dictionary requires ~|a|*Ø|t i| steps

Demo

38

Levenshtein Automaton

39

Levenshtein Automaton

Nondeterministic finite automaton (NFA). States, alphabet, transitions, set of final states,
initial state. For each symbol and state there can multiple transitions.

Deterministic finite automaton (DFA). States, alphabet, transitions, set of final states,
initial state. For each symbol and state there can be only one transition.

40

Levenshtein Automaton

Automata can be used to recognize patterns in text

41

1) Begin from initial state

2) Follow transitions for each character in text

3) If resulting state is the final state – it is a match.

Example: 0 1 0 0 1

Levenshtein Automaton

42

Matching dictionary with DFA is easy:

Levenshtein Automaton

Levenshtein automaton for a string w and a number d is

a finite state automaton that can recognize the set of all

strings whose Levenshtein distance from w is at most d

43

Levenshtein Automaton

A match require at most |b| steps

Automaton that recognizes: car~1

Levenshtein Automaton

How to create Levenshtein Automaton for word w

and a number d?

45

Construction of NFA

Automaton to recognize car

46

0

0 1
c

0 1 2
c a

0 1 2 3
c a r

Construction of NFA

47

Automaton to recognize car~1

0

Construction of NFA

48

Automaton to recognize car~1

Recognize: _, a, c, ac, ca

blue – insertion

red – deletion

green - substitution

0 1
c

4 5
c

**
*
ʶ

Construction of NFA

49

0 1
c

4 5
c

**
*
ʶ

Automaton to recognize car~1

Construction of NFA

50

0 1 2
c a

4 5 6
c a

*

*

ʶʶ

Automaton to recognize car~1

Construction of NFA

51

car~1

0 1 2 3
c a r

4 5 6 7
c a r

*

*
*

*
ʶʶʶ

Automaton to recognize car~1

Construction of NFA

52

car~2

0 1 2 3
c a r

4 5 6 7
c a r

*

*
*

*
ʶʶʶ

8 9 10 11

c a r

*
*** *

*
*

ʶʶʶ

Each fuzzy degree adds one level

Levenshtein Automaton

Every NFA can be converted to equivalent DFA

53

Levenshtein Automaton

NFA for car~1 DFA for car~1

Powersetconstruction

Levenshtein Automaton

Linear constructioncar~1

Levenshtein Automaton

56

Matching dictionary with DFA is easy:

When current term and previous term share prefix,
algorithm can start matching from the prefix

Levenshtein Automaton

Matching a Prefix Tree based dictionaries

cad
car
caravan
cars

Matching dictionary with Automaton
Dictionary DFA Fuzzy term DFA

When both DFAs are in the final state (double circle) we have a match:

• cad

• car

• cars

Fuzzy DFA can be used to generate all possible terms that match it.

Levenshtein Automaton

1) Difficult to implement

2) DFA construction might be slow for large degree d. In practice
used when d {1,2,3,4}

3) Matching dictionary requires less than |a+d |*N steps, where N
number of terms in dictionary

59

Levenshtein Automaton

H. Bunke, A Fast Algorithm for Finding the Nearest Neighbor of a
Word in a Dictionary (1993)

Converting NFA to DFA using RabinðScott powersetconstruction (1959). if
the NFA hasn states, the resulting DFA may have up to 2n states

K. Schulz , S Mihov, Fast String Correction with Levenshtein-
Automata (2002)

How to compute, for any fixed degree d and any input word W, a
deterministic Levenshtein-automaton in time linear in the length of W.

Demo

61

Bitap algorithm

62

Bitap

Bitap , Shift -Or, Shift -And or Baeza-YatesðGonnet algorithm

R. Baeza-Yates, G. Gonnet. A New Approach to Text Searching
(1992)

Bálint Dömölki, An algorithm for syntactical analysis (1964)

Bitap (Exact Match)

64

Text : ABABABC

Pattern : ABAB

R0

The update procedure for the R vector is:

R0 [i] = 1 for all i = 1..m

Rj+1[1] = 0 when p1 = tj + 1

Rj+1[i] = 0 when Rj[i ī 1] = 0and pi = tj+1

Bitap (Exact Match)

65

Text : ABABABC

Pattern : ABAB

R0 R1

The update procedure for the R vector is:

R0 [i] = 1 for all i = 1..m

Rj+1[1] = 0 when p1 = tj + 1

Rj+1[i] = 0 when Rj[i ī 1] = 0and pi = tj+1

Bitap (Exact Match)

66

Text : ABABABC

Pattern : ABAB

R0 R1 R2

The update procedure for the R vector is:

R0 [i] = 1 for all i = 1..m

Rj+1[1] = 0 when p1 = tj + 1

Rj+1[i] = 0 when Rj[i ī 1] = 0and pi = tj+1

Bitap (Exact Match)

67

Text : ABABABC

Pattern : ABAB

R0 R1 R2 R3

The update procedure for the R vector is:

R0 [i] = 1 for all i = 1..m

Rj+1[1] = 0 when p1 = tj + 1

Rj+1[i] = 0 when Rj[i ī 1] = 0and pi = tj+1

Bitap (Exact Match)

68

Text : ABABABC

Pattern : ABAB

R0 R1 R2 R3 R4

Match when value in the last row is 0

Bitap (Exact Match)

69

Text : ABABABC

Pattern : ABAB

R0 R1 R2 R3 R4 R5 R6 R7

Bitap

When pattern is small, vector R can be represented by unsigned
integral value:

uint – for patterns with up to 32 characters

ulong – for patterns with up to 64 characters

70

Bitap (Exact Match)

71

The update procedure for the R vector:

R0 = 2n-1 (n number of bits in R)

Rj+1 = (Rj << 1) | T[tj]

Match when:

Rj & (mask) == 0

Mask = 1<<(|Pattern|-1)

Text : ABABABC

Pattern : ABAB

Preprocessing step:

Build T vectors for every character C in pattern:

T[C][i] = 1 if Pi=C, 0 otherwise.

Bitap (Exact Match)

72

Text : ABABABC

Pattern : ABAB

Bitap (Exact Match)

73

Text : ABABABC

Pattern : ABAB

Bitap (Exact Match)

74

Text : ABABABC

Pattern : ABAB

Bitap (Exact Match)

75

Text : ABABABC

Pattern : ABAB

Bitap

76

Bitap

Bitap can be used for fuzzy matching with degree d.

The idea of fuzzy bitap is to simulate Levenshtein automaton (NFA) using bit -parallelism, so

that each level of the automaton fits in a computer word (32, 64 or 128 states per level).

For each new character, all transitions of NFA are simulated using bit operations among d+1

computer words .

77

0 1 2 3
c a r

4 5 6 7
c a r

*

*
*

*
ʶʶʶ

Bitap

78

Bitap can be used for fuzzy matching with degree d.

•Instead of 1 vector, we need to keep additional d+1 bit vectors: R0
j, R

1
j,…, Rd

j

•Rd – tracks matching with at most d differences

Bitap

79

0 1 2 3
c a r

4 5 6 7
c a r

*

*
*

*
ʶʶʶ

Bitap can be used for fuzzy matching with degree d.

•Instead of 1 vector, we need to keep additional d+1 bit vectors: R0
j, R

1
j,…, Rd

j

•Rd – tracks matching with at most d differences

R0

R1

Bitap

Update procedure looks like this:

80

Bitap can be used for fuzzy matching with degree d.

•Instead of 1 vector, we need to keep additional d+1 bit vectors: R0
j, R

1
j,…, Rd

j

•Rd – tracks matching with at most d differences

Bitap

1) Easy to implement, might be difficult to understand

2) Memory required: O(|Pattern |*|Alphabet |)

3) Complexity: O(|Text|) when searching for all matches, or
O(|Pattern|) when searching for the first match

4) Efficient when |Pattern| is small: 8,32,64,128

81

Benchmark

Demo

82

Benchmark

Dataset : Project Gutenberg, different languages, 2Gb of text

Search Engine: ZyLAB 6.6

Dictionary : 2178239 terms (2Mln)

Query: environment~2

83

References

•Levenshtein (1966). "Binary codes capable of correcting deletions, insertions, and reversals". Soviet Physics

Doklady

•Wagner, Fischer, Michael (1974). "The String-to-String Correction Problem". Journal of the ACM

•Wu, Manber (1991). "Fast text searching with errors."

•Wu, Manber (1992). "Agrep - A Fast Approximate Pattern-Matching Tool"

•Baeza-Yates, Gonnet (1992). "A New Approach to Text Searching." Communications of the ACM, 35(10)

•Bunke (1993), A Fast Algorithm for Finding the Nearest Neighbor of a Word in a Dictionary

•Navarro, Gonzalo (2001). "A guided tour to approximate string matching". ACM Computing Surveys

•Schulz, Mihov (2002). "Fast String Correction with Levenshtein-Automata"

84

